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Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, POB 24, 180 40 
Praha 8. Czechoslovakia 

Received 15 June 1978 

Abstract. Clebsch-Gordan products are given for representative double point groups. With 
the use of a previously described algorithm, the extended integrity bases of irreducible 
matrix groups defined by representations of double point groups are derived. The bases can 
be used as a starting point for the calculation of extended integrity bases of double point 
groups in any set of variables. 

1. Introduction 

This work is a continuation of two previous papers (Kopsk9 1979a, b, hereafter referred 
to as I and 11). In paper I we defined the concept of extended integrity bases (EIBS) for 
finite groups. Further we proved that such bases are finite in a finite set of variables (the 
extended Noether’s theorem); the proof was based on an algorithm which uses 
successive Clebsch-Gordan reductions with elimination of reducible covariants and 
which is also suitable for the actual calculation of EIBS. In I1 we showed from a practical 
approach that the EIBS of a given group in various sets of variables are composed from 
EIBS of irreducible matrix groups defined by reps (irreducible representations) of this 
group; such bases were given for all matrix groups (up to equivalence) defined by reps of 
crystal point groups. 

In this paper we shall extend the results to the crystallographic double point groups. 
Let us recall the steps we have to follow: (i) firstly, we choose certain matrix reps of the 
groups in question, with which we shall associate all procedures; (ii) secondly, we find 
the Clebsch-Gordan products which give a prescription for multiplication of bases (of 
covariants); (iii) thirdly, we apply the algorithm to derive the EIBS. Since factor groups 
G‘d’/C\d’ are isomorphic to point groups G for which the EIBS have already been given, 
it will be sufficient to work only on those reps of G‘d’ which are not engendered by reps 
of G (double-valued or projective reps of G).  The EIBS of G will be used to simplify the 
work in G‘d’. Except for the four-dimensional rep of the group O‘d’, which generates 19 
invariants and 272 covariants and shall therefore be omitted for space reasons, we shall 
give the EIBS for all irreducible matrix groups defined by reps of crystal double point 
groups. 

Another approach to the calculation of EIBS has been recently reported by Patera et 
a1 (1978). This and our approach have already been confronted in paper I, to which we 
refer for details; it is based on the use of generalised Molien series (McLellan 1974) 
which give a qualitative description of the structure of EIBS, namely, the numbers and 
degrees of irreducible invariants and covariants and the division of invariants into the 

0305-4470/79/070959 + 14$01.00 0 1979 The Institute of Physics 959 



960 V Kopsky 

denominator (free) and numerator (transient) invariants. The EIBS themselves are 
calculated simply by inspection. We have, in preparation of the present paper, used 
Molien series to determine the structure of EIBS for cubic groups. These data are not 
given here, because they may be found in a work by Desmier and Sharp (1979)1, who 
also calculate the EIBS for double point groups, including the non-crystallographic ones. 
Our choice of matrix ireps and of EIBS differs from that of Desmier and Sharp (1979) in 
several cases, and in addition we give the tables of Clebsch-Gordan products from 
which the calculations can be followed. For the sake of brevity we do not repeat here 
the bibliography on the subject of EIBS, the most important part of which, we believe, is 
given by Patera er a1 (1978) and in papers.1 and 11. 

2. Double point groups and their representations 

2.1. Even and odd representations 

The relation between ordinary (crystal) proper rotation groups and corresponding 
double point groups is given by the homomorphism (b: SU(2)+S0(3) of the two- 
dimensional unitary group SU(2) onto the proper rotation group SO(3) for which SU(2) 
is the reprekentative (covering) group (see e.g. Janssen 1973). Accordingly, to each 
subgroup G c SO(3) there corresponds a subgroup G‘d’ c SU(2) so that qjG‘d’ = G ; G is 
here the proper rotation group, G‘d’ its double group. The kernel of the homomor- 
phism is the trivial double point group Cy’ = ker (b, and the ordinary point group G 
can be considered as the factor group G‘d’/Cy’. The classes of conjugate elements of 
G‘d’ and hence the numbers of reps of G‘d’ are related to those of G by the Opechowski 
rules (Opechowski 1940); the reps are well known (see e.g. Bradley and Cracknell 
1972). 

The reps of G‘d’ can be divided into two sets: (i) reps engendered by reps of G-the 
ordinary or single-valued reps of G, which correspond to states with integer spin 
(momentum) in quantum mechanics; (ii) the remaining reps of G‘d’-the double-valued 
reps of G, which correspond to states with half-odd-integer spin. The latter are in fact 
the projective reps of G ;  for cyclic groups and for the complete group D3 they can be 
transformed by a gauge transformation into the ordinary reps of G. The Schur 
multiplicator of groups D1, D3, Dg, T and 0 is C2 (or, in this case, rather Cid’), and hence 
the corresponding double point groups are representative groups, the double-valued 
reps being projective reps non-similar to the ordinary ones. It should be noted, 
however, that the double point groups do not exhaust all representative groups (Boyle 
and Green 1978). 

We shall simply call the reps (i) even and the reps (ii) odd, referring to their property 
that powers and products of even reps are again even, while even powers and products 
of odd reps are even reps, and odd powers and products of odd reps are odd reps. Since 
polynomial algebras generated by even reps were considered in 11, it is sufficient now to 
consider only the polynomials in variables belonging to odd reps. 

2.2. Representative double point groups and choice of reps 

As was said in the Introduction, we shall consider only the EIBS of irreducible matrix 

t We received by courtesy of the authors, a preprint of this paper shortly before submission of the present 
study. 
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groups defined by reps of double point groups. All such matrix groups defined by odd 
reps are defined by odd reps of double point groups corresponding to proper rotation 
groups. Indeed, the non-centrosymmetrical double point groups are isomorphic to 
these; the centrosymmetrical double point groups provide new odd reps but no new 
matrix groups. This can be easily checked as a consequence of the fact that each odd rep 
contains a negative unit matrix. Of the remaining 11 double point groups we shall 
further eliminate the cyclic groups. The C:", C:"' and CLd) are isomorphic to CZ, Cq and 
C6 respectively, and for these groups we have already given more exhaustive informa- 
tion in the form of the typical EIBS (Kopskji 1975). To transpose the results to the 
double point groups, it is sufficient only to interpret the variables properly. Though the 
groups Cs and Clz,  which are isomorphic to Cid) and Cid) respectively, are not included 
in this work, the procedure of finding the typical integrity bases for them is simple, and 
bases for cyclic groups have been given by Patera et a1 (1978). We shall therefore 
consider only the groups Did', Did)', Dk", Dk", T'd' and O'd'. 

As before we shall use the following convention in defining the reps and the 
variables. The matrix rep roa(G): g +D'"'(g) defines operation of the group G on a 
certain typical Xa(G)-module La with basis (ea,}  by ge,, = DIP)(g)eaj, while the adjoint 
basis { x m i }  of an adjoint ~2 (G)-module La transforms by adjoint (transposed and 
reciprocal; in our case conjugate complex because we use unitary reps) matrices: 
gxai = 6 1 P ' ( g ) x a , .  We shall continue to use the even reps defined in the work on 
Clebsch-Gordan products for ordinary point groups (Kopskq 1976) as well as the same 
variables. In defining the odd reps we follow mainly the choice of matrices by Bradley 
and Cracknell(l972). One of these reps for the groups considered is the half-spin rep 
defined by matrices 

where g E SO(3) and a, p, y are its Euler angles as defined by Bradley and Cracknell 
(1972). The other two-dimensional reps are defined as products of this rep with suitable 
one-dimensional even reps. The four-dimensional rep of O'd' is chosen on the grounds 
of compatibility with reps of T'd'. To distinguish clearly the variables to odd reps we use 
for them the letters q5 and 4 with appropriate numerical labels. 

3. Presentation of results 

All specifications and results of calculations are, for convenience, collected in the 
Appendix. There we specify first for each group its odd reps by giving matrices of group 
generators. The even reps and corresponding typical variables have already been 
specified (Kopskji 1976). To avoid defining relations of groups we represent the 
generators by specifically oriented proper rotations. 

Further, we give the tables of Clebsch-Gordan products in the way we have used 
before; i.e. the leading row of the table lists the reps and the notation for the variables; 
the bilinear covariants are listed in columns below the corresponding reps; the trivial 
products with invariant x1 are omitted. Inspection is sufficient for the determination of 
the Clebsch-Gordan products in most cases. The treatment of more complicated cases 
as they appear in cubic groups will be illustrated in § 4.1. We also give only the 
even-odd and odd-odd products, because the even-even products have already been 
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given (Kopsky 1976); this completes the tables of Clebsch-Gordan products for double 
point groups. 

Finally we give the EIBS for matrix groups defined by odd reps; those for even reps 
were given in I1 and by Patera er a1 (1978). The same algorithm has been used as in 11; 
since its mechanical application leads to unnecessarily complicated covariants in cubic 
groups we have used our knowledge of the EIBS for even reps (see 0 4.2). A spectacular 
presentation of EIBS in the form of tables analogous to those used in I1 is avoided here, 
because such tables will, in the case of odd reps, be extremely complicated. Instead we 
give the irreducible covariants in a successive list, using notation similar to that 
employed by Patera et a1 (1978). The denominator invariants are denoted by I, 
numerator invariants by E,  covariants to one-dimensional reps by E'"'-these are the 
so-called relative invariants (Burnside 1955)-and many-dimensional covariants by 
p'"'. The first number in parentheses is the label of variables in which the polynomials 
are considered, the second is the degree. The label of variables is dropped in the actual 
expression of the covariant; the many-dimensional covariants are written as row 
vectors. Within the same group we often shorten the list by comparing a covariant with 
a previously given one; the equations refer, of course, only to the functional form of 
these covariants. A conjugate complex p'"'* means p'"' with conjugate complex 
coefficients, not variables. To distinguish the denominator and numerator invariants 
we have to check whether the invariants obtained are algebraically independent or not. 
In the latter case, the corresponding syzygy is given. 

4. Illustration of calculations 

4.1. Clebsch-Gordan products for cubic groups 

A suitable simplification of the calculation is provided by partially classifying the 
transformation properties of typical variables with respect to one suitable generator. In 
group T'd', for example, we use the generator 2, with eigenvalues 1, -1, -i, i and 
eigenfunctions as shown in the table. 

2, eigenvalues 2, eigenfunctions 

1 
-1 
-i 

I 

It is now easy to classify any product of variables with respect to 2,. It follows 
immediately, for example, that x2(47, $,) or X 3 ( 4 6 ,  $6) are r:"-covariants. Let us 
further consider the product of (x4 ,  y4, z4 )  with (&, &). From the characters one finds 
easily that r40r5 = r50r60r7. From the table above we see at once that x ~ $ ~ ,  y4$5  
and z4q& combine into b5, 46 or 47, while x4&, y 4 &  and z4$5 combine into 4b5, $6 or 
+b7. Now we form linear combinations: 

CP = ax4$5 + by4$5 + cz445 

and 

* = a'x4& + b'y44, + C ' Z 4 $ 5 ,  
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with indeterminate coefficients. To get (a, 9) = (&, t,hs) we determine the coefficients 
from 

Analogously we get (a, 9) = (46, $6) or (d7, +7) adding factors -w or w 2  respectively 
into the latter equations. 

The table of Clebsch-Gordan products must be self-consistent with respect to 
mutual substitutions of covariants. This provides many simplifications in its con- 
struction as well as a final check. By self-consistence of the table we mean the following. 
As concerns transformation properties, it is irrelevant whether we consider linear or 
bilinear covariants, so that we can treat, for example, x2(& CL5)  as (46, $6). Then, if we 
take, say, the invariant 45$5-$545 and multiply it by x 2 ,  we certainly get the 
rz-covariant, which in view of what has been said above can be written as 4546 - $ 5 4 6 .  

Analogous relations hold also in more complicated cases. 

3cD = $( 1 - i)(@ - 9), 3 9  = i( 1 + i)(@ + 9). 

4.2. Extended integrity bases of cubic groups 

A mechanical application of the algorithm leads, for cubic groups, to rather complicated 
covariants. It is, however, easy to see that the whole algebra of even-degree poly- 
nomials, say in (45, $ 5 )  in group T'd', must be generated by the least even-degree 
covariant, which is of the form (4'- $', -i(4'+ $'), 24$). This is also, more generally, 
the D"'-vector of SO(3) in components of the D(1'2)-spinor of SU(2). This quadratic 
covariant is identified with the r?'-covariant (x4, y 4 ,  24)  in T'd'. The EIB of r?' has been 
given in 11; there the components x4, y 4 ,  2 4  were independent variables, while now they 
are related by x i + y i + z : = O .  It is easy to see that we can get the irreducible 
even-degree covariants in (&, $ 5 )  by substituting the second-degree covariant into the 
elements of the integrity basis in (x4, y 4 ,  24). Due to the relation between these 
components, some terms in the EIB may vanish, but no new terms will appear, since if 
they are irreducible in (q+s, $ 5 )  they will be irreducible also in (x4, y 4 ,  24). The 
determination of the even-degree irreducible covariants is thus very simple. From them 
we can then construct the odd-degree covariants with the use of Clebsch-Gordan 
products. Analogously we can proceed with other variables. 

One-dimensional covariants connect the many-dimensional ones and enable us to 
find useful relations which are given in the Appendix in the relevant places. Thus, for 
example, XZ(46, $6) in dd' is the (47, $7) covariant. Since x;'' = x l  and x ; ~ + '  =xz, the 
even-degree covariants in (46, $6) and (c#J,, +b7) must coincide, while odd-degree 
covariants have different labels 6 or 7. 
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Appendix. Clebsch-Gordan products and extended integrity bases of polynomial 
algebras generated by odd reps of double point groups Did), Did), Did), Did), T'd' and 

Abbreviations: w = a + ib = exp(2~ i /6 ) ,  a = 1/2, b = J 3 / 2 ;  8 = e x p ( 2 ~ i / 8 )  = 
(1 +i) /&; E = exp(2~ i /12 )  = b +ia.  

O(d) 
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Group D:d’-2,2,2~’-quafernion group 

Generators: 0:”(2,)  = ( ’) 0 y ’ ( 2 x )  = ( . o). 

Clebsch-Gordan products 

O i  
o -i ’ 

Extended integrity basis 

Group D:d’-3,2id’ 

Extended integrity bases 



Group Dy’-4,2,2$’ 

Generators: DL”(4,) = (,” ;*)% D m = ( p  A); 

CG products are given on page 970. 

Extended integrity bases 

Group Dy’-6,2,2:d) 

0 y ’ ( 2 , ) = 0 ~ 1 ’ ( 2 x ) = D ‘ b ’ ( 2 , )  = 

CG products are given on page 970. 

Extended integrity bases 
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Group T‘d’-23‘d’ 

Generators: Oy’(3) = - l + i (  -i) DY’(2,)=(; -:); 
2 -1 -i ’ 

DF’(3) =- u2(1+ i ) (  1 -i> DF’(2,) = ( O ) .  
2 -1 -i ’ o -i ’ 

CG products are given on page 971. 

Extended integrity bases 
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Group O'd'-432'd' 

Generators: Ot '(4,)= ( e o  *), 0:'(3)=--( 1 e e* *); 
O B  ~2 -e  e 

Clebsch-Gordan products 
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Extended integrity bases 
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r’(x2): E”’(6, 6) = 4$(d4 - (I~), E”’(6, 12) = (44+ $4)(48+ $8-3444$4). 

Ry’ (x3 ,  y 3 ) :  p@’(6,4) = [34’$’, b(44+ $4)], ~ ‘ ~ ’ ( 6 . 8 )  = [4*+ G 8 -  1364$4, 864’$’(d4+ (L4)1, ~ ‘ ~ ’ ( 6 ,  10) 
= E”’(6, 6)[b(44+ IL4), -34’$’], ~ ‘ ~ ’ ( 6 ,  14) =E”’(6, 6)[8bd2$’(d4+ (L4), -4’- ea+ 1344$41. 

r:’(x4, y4, 24): ~ ‘ ~ ’ ( 6 , 4 )  = [24$(4’ + $’I, 2i4$(4’ - $’I, 44 - rL4I, ~ ‘ ~ ’ ( 6 ~ 6 )  = [d6 - $‘+ 54’$’(4’ - $’I, 
-i{46+ $6 - 54~’$~(4’+ $’)}, -44$(44 + $4)1, ~ ‘ ~ ’ ( 6 ,  8) = E”’(6, 6)p”’(6, 2), ~ ‘ ~ ’ ( 6 ,  10) = 

[ - ~ ‘ o + ~ ‘ o - 3 ~ 2 ~ 2 ( ~ 6 - ~ 6 ) +  1444$4(42-$2), - i { ~ ’ o + $ ’ o - 3 6 2 $ 2 ( ~ 6 + $ 6 ) -  14&4$4(42+$2), 
1 6 ~ $ ’ $ ~ ( 4 ~ +  (L4)], ~ ‘ ~ ’ ( 6 ,  12) = E”’(6, 6)p”’(6, 6), ~ ‘ ~ ’ ( 6 ,  14)= E“’(6, 6)pi5’(6, 8). 

r y ’ ( x s ,  ys, z S ) :  ~ “ ’ ( 6 . 2 )  = [4’ - $’, -i(d’ + CL’), 24$,1, p”’(6, 6) = [(4’- $2)3, i(4’ + $‘I3, 843$3], 
p”’(6,8) = [ ~ ~ { ~ 6 + ~ 6 + 7 ~ 2 ~ 2 ( ~ 2 + ~ 2 ) } ,  i4+t46- ( ~ ~ - 7 4 ~ ( ~ ~ ( 4 ’ - $ ~ ) } ,  -48+$8~,  
p”’(6, 10) = d2’(6,  6 ) ~ ‘ ~ ’ ( 6 ,  4), p”’(6, 12) = E”’(6, 6 ) ~ ‘ ~ ’ ( 6 ,  6). p”’(6, 16) = E”’(6, 6 ) ~ ‘ ~ ’ ( 6 ,  10). 

rF’(46, $ 6 ) :  ~ ‘ ~ ’ ( 6 ,  1) = (4, I)), ~ ‘ ~ ’ ( 6 ,  7) = (47+744$3, -$7-743$4), ~ ‘ ~ ’ ( 6 ,  11) = E‘”(6, 6 ) ~ ‘ ~ ’ ( 6 ,  5 ) ,  
~ ‘ ~ ’ ( 6 ,  17) = E”’(6, 6 ) ~ ‘ ~ ’ ( 6 ,  11). 

1-:”(4~. $7): p(”(6,5) = (4 ’ -  54$4, (L’- 44$), ~ ( ~ ’ ( 6 ~ 7 )  = (4% - 4 V ,  -41~~+4’$’), 
~ ‘ ~ ’ ( 6 ,  11) = ( 1 , $ ” - 2 2 4 ~ $ ~ - 1 1 4 ~ $ ~ ,  -q5”+22~$’$~+1lq5~$~), ~ ‘ ~ ’ ( 6 ,  13)=E‘2’(6,6)p‘6’(6, 7). 

l$’’(4~, $ 8 ;  68, $8) :  ~ ‘ ~ ’ ( 6 ,  3)=($3-2ib42$, -43+2ib4$2; -G3-2ib4’$, 1$~+2ib4$’), ~ ‘ ~ ’ ( 6 ,  5 )  = 
(4’+ 4$4-4ib43$2, G5 + q!~~$-4ib4’$~; -4’ -4$4-4ib43$2, -$5-44$-4ib42$3), p“’(6,7) = 

($7-544$3+2ib(46$+342$’),  -47+543$4-2ib(4$6+345C(/2); $7-544$3-2ib(46$+342$5) ,  
- 4 7 + 5 4 3 $ 4 + 2 i b ( 4 $ 6 + 3 4 5 $ 2 ) ,  p@’(6,9)= ( 4 9 + 2 i b 4 7 $ 2 - 7 4 5 ~ 4 +  14ib43$6-24$8, 

$9-2ib42$7-744$5-14ib46$3-244$), p“’(6, 11)=E”’(6, 6 ) .  ( p z ’ ,  p : ’ ;  - p F ’ ,  -p$’)(6, S), 

-~$)) (6 ,9) .  

1 4 i b ~ $ ~ $ ~ - 2 6 ~ $ ;  49-2ib47$2-745$4- 14ib43$’-2&8, 

~ ‘ ~ ’ ( 6 ,  13)=E”’(6,6) ( p z ’ ,  p?’ ;  -pF’,  -p$’)(6,7), p“’(6,15)=E”’(6,6)~ ( p z ’ ,  p:’;  - p F ’ ,  
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